
Serverless
Security
Primer

The move to serverless has made some things
better and some things worse, but pretty much
nothing has stayed the same. In this eBook, we’ll
cover the security advantages of serverless, then
examine the top 6 security challenges serverless
raises, along with solutions for mitigation.

Top Risks and
How to Mitigate

The Evolution of the Cloud
Application

Configuration

Scalability

Monitoring

Patching

Setup

OS

Provisioning

Virtualization

Servers

Network

Data Center

Application

Configuration

Scalability

Monitoring

Patching

Setup

OS

Provisioning

Virtualization

Servers

Network

Data Center

Application

Configuration

Scalability

Monitoring

Patching

Setup

OS

Provisioning

Virtualization

Servers

Network

Data Center

Application

Configuration

Scalability

Monitoring

Patching

Setup

OS

Provisioning

Virtualization

Servers

Network

Data Center

Application

Configuration

Scalability

Monitoring

Patching

Setup

OS

Provisioning

Virtualization

Servers

Network

Data Center

Data center
Hosting

2000

VMs

2000-...

Containers

2013-...

Serverless

2016-...

On Premise

1990

There are many benefits to moving to a
serverless architecture. With
automated, nearly infinite scaling, you’re
absolved of the need to make decisions
on spinning up servers. Very little
stands between developers and
deployed code, enabling serverless to
facilitate a shift from DevOps to NoOps.
This lack of friction is valuable,
speeding time to market and making it
easier to maintain and test individual
functions. Finally, you pay only for what
you use, resulting in lower costs.

Serverless
INCREASES SPEED, LOWERS COSTS

The Security
Impacts of
Serverless

There are many ways in which serverless alters
your security needs. In some regards,

the nature of serverless improves security.
So we’ll start with the positives.

No More Need to Patch Servers
Historically, many exploits have been successful becausepatches haven‘t been updated. Serverless entirely
removes that risk. With no servers, there’s no longer a need to patch and secure your servers independently.

AWS, Microsoft, and Google have, for the most part, proven very reliable in keeping their parts of the stack
patched andsecured, so giving them a bigger chunk of the stack certainly improves things on that end.

Attackers’ Lives Become Harder
The ephemeral, stateless nature of serverless compute means that exploits don’t necessarily turn into
persistent presence inside your system. Lambda functions run in magical containers that self-destruct every
few minutes (mostly), and the function calls themselves typically have short timeouts, so gaining a foothold in
such a container will not give your attacker the prize it might have in the past.

Easily Examine The Skeleton
The fact that your application is now structured as a large number of small functions in the cloud enables you to
see each unit of compute as a separate entity. This provides a fantastic opportunity for security.

Application security tools often go to incredible lengths to analyze and instrument your packaged
app just to be able to observe or filter the internal flow of the app. With serverless, the bone structure and
nervous system of your application are visible in the cloud deployment. There’s no need to break up an app to
do security inside it.

Granular Control Of Permissions
With serverless, you assign security policies to individual functions. This enables granular control over
what processes and databases each function can trigger and access.

z

Overview

Not owning the platform means not being able to
leverage the platform for security in ways you
might have in the past. The threats to your
serverless applications are, in many ways, the
same as they were before serverless. But they
may not look and act the same way. Maintaining
control and security requires a paradigm shift in
your thinking.

SECURITY CHALLENGES AND
SOLUTIONS FOR MITIGATION

While serverless reduces some of the top security
threats, vulnerabilities within the application layer
remain the same, and some security threats are
becoming even worse. In fact, it’s a different set of
issues. We’ll discuss the problems related to serverless
computing, common misapplication, and some
proposed solutions for mitigation.

Your Apps Have Gone Serverless.
HAS YOUR SECURITY?

Lorem ipsum

A FUNCTION IS A PERIMETER
THAT NEEDS TO BE SECURED

PERIMETER PERIMETER PERIMETER

PERIMETER PERIMETER

How Is Serverless Different?
The fragmentation of your application to smaller
components that are callable, coupled with the use of
triggers from diverse sources (such as storage, message
queues, and databases) means attackers have more
targets and more attack vectors.

Overview

When we think of a web application exposing a
lot of functionality that is all tied together, our
first point of defense is typically the perimeter.
We’ll throw various forms of input sanitization
at that boundary, scrutinizing those HTTP
requests coming in. This is often achieved by
using Web Application Firewalls (WAFs) or
regular perimeter devices filtering the traffic.

Serverless, with it’s event driven architecture
means that your functions can be executed for
a myriad of reasons, from diverse sources. In
effect, every function is on its own and
therefore has its own perimeter. Even more
challenging is the fact that many of those
triggers don’t come from HTTP requests. That
means traditional filtering solutions won’t
help us.

Mitigation:
Keep using your WAF and API Gateway, but be
prepared to apply perimeter security at the function
level as well.

Loss of the Perimeter1

Overview

Application security starts with permissions.
The first goal of the security owner in any
application is ensuring that the privilege level
is always as low as possible. That will ensure
that even if an attacker finds a way through
your perimeter, they will be hard pressed to
get at your valuable assets.

This is always challenging, but serverless can
substantially increase the number of
resources that can act and be acted upon.
You must consider the policies governing the
interaction between hundreds of resources,
with hundreds of possible permissions in
each direction.

Serverless applications can present an
almost endless set of opportunities
misconfigure permissions, and there are a lot
of forces pulling your application in
that direction.

How Is Serverless Different?

The large number of serverless resources
that interact with each other requires much
more effort to configure correctly. Even then
permissions are correct during deployment,
small changes in server configuration could
suddenly open your application up to attack.

Mitigation:

Spend time crafting suitable, minimal roles for
each of your functions. Review the code and
configuration of each function, and enumerate
all the possible actions taken by your code.
Consider emerging technologies that can help
craft these policies for you, and alert you any
time things change.

Managing Permissions2

Overview
At first glance, Serverless functions might appear to be
your code— but that’s not entirely true. Functions often
include dependencies, pulled in from npm (Node.js),
PyPI (Python), Maven (Java) or other relevant
repositories. These code packages are like little pieces
of foreign infrastructure embedded inside your app.

Application dependencies are similar to the
oft-exploited server dependencies. They are prevalent,
downloaded billions of times a month; it’s hard to track
which packages you’re using; and they are frequently
vulnerable, with new vulnerabilities disclosed regularly.
Attackers are already exploiting vulnerable application
dependencies, but denied the easy path of vulnerable
server dependencies, they will shift to attacking these
similar entities in full force.

In July 2017, a security bug bounty hunter from
Moscow detailed how he was able to gain direct push
rights on 73,983 NPM Packages – that’s a total of 14%
of the NPM ecosystem, the largest application
dependency repository in the world. Because of the
way many NPM packages rely on other packages, this
actually meant that a whopping 54% of NPM packages
could be infected with malware. This means that
attackers can fairly easily get their code into your
functions without directly attacking your deployment.

How Is Serverless Different?
While the issue of third party dependencies and their
vulnerabilities is not new or unique to serverless, the fact
that your code is spread out over a much larger set of
small services, each of which imports its own set of
libraries, makes managing this problem manually
particularly challenging in serverless.

Conversely, the subdivision of the application into
smaller services, sometimes referred to as
nano-services, presents the opportunity to apply a more
fine grained degree of least privilege, which can
significantly limit the impact of a vulnerable library.

Mitigation:
Known vulnerabilities are as easily discoverable for the
customer as they are for attackers. Securing application
dependencies requires access to a good database and
automated tools to continuously prevent new vulnerable
packages from being used and getting alerted for newly
disclosed issues.

Ensuring proper segmentation of the application into
disparate services, and the scrupulous application of the
principle of least privilege, can help minimize the impact
of vulnerably libraries on your deployment.

Vulnerable Application
Dependencies

3

How Is Serverless Different?
Serverless means there is less standing between
developers and productio n, which means there are fewer
places to catch mistakes in code and configuration.
Additionally, with a more exposed attack surface, bugs can
more easily turn into security liabilities.

Mitigation:

Training is critical. Code reviews will help as well.
Mostly, though, monitor your code and
configuration using tools to test configuration.
Additionally, ensure that each of your functions
executes with the smallest viable set of privileges,
so the damage from any holes that slip through is
minimal.

Overview

Let’s face it, even the best developers make
mistakes, and not all of your developers are the
best developers. Mistakes can easily turn into
security holes, so finding a way to exterminate
these bugs early is critical.

Serverless deployments, with their diverse
triggers and infinite scaling can even mean that
the smallest of errors can quickly turn into a
self-inflicted denial-of-service attack from within
your application.

Bad Code4

Mitigation:
Deploying proper mitigations for DoS attacks, such as
Amazon’s API Gateway, in front of web endpoints can still
help, but you must consider DoS and DoW via other
triggers, such as Kinesis, and S3. Function self-protection
can help detect these attacks, minimize their impacts, and
dynamically adjust scaling choices to help mitigate.

Overview
Serverless provides infinite scaling, right? Not quite.
Under the hood, there are various limits that the cloud
providers impose on your applications. Those limits can
be about maximum concurrency for your application,
but also about how quickly the concurrency can rise.
You may have negotiated higher limits for your
application, but it’s worth remembering that scaling is
not infinite, so you are still susceptible to
Denial-of-Service attacks if an attacker can saturate
your limits.

At the same time, if you have set your concurrency
limits high enough to avoid this issue, you now face the
more modern fear of Denial-of-Wallet attacks, which is
simply an attacker saying: “If I can’t overwhelm you, I
can dig deep into your pockets.” If an attacker can
generate 10,000 requests per second on you application
and sustain that for 24 hours, the costs just for your API
Gateway and Lambda Invocations could be over $5000,
just for that day. If they can generate 100,000, and keep
at it for a week… well you can do the math.

How Is Serverless Different?
It can be easier to enable massive auto-scaling of your
service when using serverless, which can help mitigate
some DoS attacks, but opens you up to DoW attacks that
may not have really been relevant previously.
Furthermore, you might not even realize you’re under
attack for a while if your app can scale enough.

Denial-of-Service
Denial-of-Wallet

5

Mitigation:

Consider strategies to limit the lifetime of your
containers (for example, on some platforms there are
APIs to make a container refresh). Some security
solutions can do this for you. Furthermore, make sure
you have a security solution that can detect things that
try to hang around in your containers, like extra code,
hidden native process, etc., and then flush those things
out of the container.

Overview
Cloud providers run your functions inside a container of
some sort. Because the cost of getting your function ready
to process a request is not insignificant (the “cold start”) the
providers will try to keep this container available to use
immediately (“warm”) for as long as makes sense. This
means that your container could persist for a while, and
that a successful attack on a container could do more
damage than you might expect. Don’t be fooled by the
ephemeral promise, containers, and therefore attacks, can
persist for hours, and maybe even days. Worse still, you can
expect the cloud providers to keep containers for
applications that are relatively active warm for longer and
longer, as they try to provide lower latency and better
performance.

How Is Serverless Different?
Well, that’s the thing, it isn’t as different as you have been
made to expect. Yes, things are more ephemeral than
containers and VMs, and we’re unlikely to see function
instances hanging around for months, like our VMs do.
But if you’re relying on this for security, you are in for a
rude awakening.

Container Reuse6

Serverless both improves security in some ways,
and generates new weaknesses and vulnerabilities.
As a paradigm shift in web application structure,
serverless requires a paradigm shift in security.

Like any facet of cyber security, securing your
serverless application requires a variety of tactics
throughout your entire application development life
cycle and supply chain. Stringent adherence to
best practices will improve your security posture.
However, proper development is not enough. To
achieve ideal protection, you must leverage tools
that provide continuous security assurance, attack
prevention and detection, and deception.

1

2

3

4

5

6

LOSS OF THE PERIMETER
Keep using your WAF and API Gateway, but be prepared
to apply perimeter security at the function level as well.

MANAGING PERMISSIONS
Spend time crafting suitable, minimal roles for each of
your functions. Consider emerging technologies that can help
craft these policies for you, and alert you of changes.

VULNERABLE APPLICATION DEPENDENCIES
Securing application dependencies requires access to a good
database and automated tools. Help minimize the impact of
vulnerable libraries by ensuring proper segmentation of the
application into disparate services, and scrupulously applying
least privilege.

BAD CODE
Training is critical. Code reviews will help as well. Mostly,
though, monitor your code and configuration using tools to
test configuration.

DENIAL-OF-SERVICE OR DENIAL-OF-WALLET
Deploying proper mitigations for DoS attacks, such as
Amazon’s API Gateway, in front of web endpoints can still
help, but you must consider other triggers. Function
self-protection can help detect, minimize, and mitigate
these attacks.

CONTAINER REUSING
Consider strategies to limit the lifetime of your containers.
Make sure you have a security solution that can detect, and
then flush out things that try to hang around in your
containers.

Conclusion

Through continuous security assurance, attack
prevention and detection, and deception the
CloudGuards serverless solution helps
organizations achieve control over the security of
their applications. CloudGuard continually scans
your infrastructure and, using machine learning,
adapts your security posture to maximize
protection. As a single tool doing active defense,
CloudGuard gains information to use in aggregate,
resulting in a unique security synergy.

